If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-10-50=0
We add all the numbers together, and all the variables
t^2-60=0
a = 1; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·1·(-60)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*1}=\frac{0-4\sqrt{15}}{2} =-\frac{4\sqrt{15}}{2} =-2\sqrt{15} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*1}=\frac{0+4\sqrt{15}}{2} =\frac{4\sqrt{15}}{2} =2\sqrt{15} $
| 12.15+x=25 | | -7(x-9)=-2+28 | | a+3/7=6 | | 9y/2=27 | | 97=-3(6n-5 | | 52+8=6r4 | | x+8+17=180 | | 3/5(5x+10)=-21 | | (3x)°=(5x–6)° | | 2a+13-4a=75 | | .5x-4=2x+41 | | 2(3x)+2x=24.8 | | 4x+34=1 | | 0.25x+5=3x-6 | | 52x=15.10 | | 31=-x.8 | | 2^2x+1=1/16 | | -5x=-25x | | 7x=165+ | | 4x+-12=-18+5x | | N(t)=2t(5t+9)^1/2+12 | | 7x+3=235 | | 4x-12=-18+5 | | 5(2–x)=40 | | |3w-21|=-24 | | 3x+-18=5 | | Y=X^2-2z+7 | | 4+7=5+m | | 3x-48=4x-2-26 | | (-12x^2-9x)/x=-4x-3 | | 2x+13=3x-18=90 | | 6-m=10-4 |